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ABSTRACT: This paper introduces a novel approach to modeling humanoid
robot mouth expressions using Elliptic Intuitionistic Fuzzy Sets (E-IFS). The
E-IFS model employs elliptic intuitionistic fuzzy logic to capture the complex-
ity of human emotions, enabling robots to express nuanced emotional states
through mouth movements. By effectively handling uncertainties and emo-
tional intensity variations, the model offers a flexible and adaptive alternative
to traditional techniques. Results demonstrate the model’s capability to gen-
erate realistic, contextually appropriate expressions, enhancing human-robot
interaction. These findings highlight its potential for making robots more emo-
tionally expressive. Future research will focus on expanding the model for
multi-modal emotional expression and assessing its impact on user perception.

KEY WORDS: Elliptic Intuitionistic Fuzzy Sets, Humanoid Robot, Index Ma-
trix, Mimics.

1 INTRODUCTION

A humanoid robot (HR) is a robot designed to mimic human behavior by having
a body shape similar to that of a person [1]. Humanoid robots often express emo-
tions through their mouths, making this a primary channel for conveying emotional
states. The literature has explored various applications of humanoid robots, includ-
ing space operations (Tzvetkova, 2014 [2]), handling and positioning work objects
(Sharari, 2015 [3]), bipedal locomotion control (Tawara et al., 2001 [4]), cooper-
ative object manipulation (Hawley and Suleiman, 2019 [5]), gender representation
in robotics (Carpenter et al., 2009 [6]), emotional and sociable humanoid robots
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(Breazeal, 2003 [7]), health assistance (Robins et al., 2005 [8]), customer acceptance
(Belanche et al., 2020 [9]), and speaker recognition (Ding and Shi, 2017 [10]). In
the rapidly evolving field of robotics, the development of emotive humanoid robots
is becoming increasingly important to enhance human-robot interaction. Emotion-
expressive humanoid robots are more adept at communication and are more likely to
be accepted in a wide range of social and service-oriented roles. One of the most cru-
cial facial features for conveying a variety of emotions, such as surprise, happiness,
grief, and anger, is the mouth. Therefore, accurate and nuanced mouth expression
modeling is essential for creating realistic and expressive emotional representations
in humanoid robots. Traditional methods for generating facial expressions in robots
often rely on predefined templates or simple geometric transformations. Although
these approaches can produce basic expressions, they often fail to capture the subtle
nuances and variations inherent in human emotions. Moreover, such methods may
lack the flexibility to accommodate the ambiguous and imprecise nature of emotional
expression, which can vary significantly across individuals and contexts.

To address these challenges, this study introduces a novel approach to model-
ing humanoid robot mouth expressions using Elliptic Intuitionistic Fuzzy Sets (E-
IFS) [11]. Each element in the E-IFS is surrounded by an ellipse, incorporating dif-
ferent levels of membership and non-membership. Fuzzy sets, particularly E-IFS, are
well-suited for emotion modeling due to their ability to handle imprecision and un-
certainty. By leveraging the mathematical properties of E-IFS, the proposed method
effectively represents a range of possible mouth shapes corresponding to different
emotional states. By integrating E-IFS logic, the model provides a more comprehen-
sive and flexible framework for emotional representation by accounting for degrees
of hesitation, membership, and non-membership, which fluctuate within an elliptical
region associated with each expression. The main contributions of this study are as
follows: Firstly, we present a comprehensive procedure for generating E-IFS-based
mouth expressions, demonstrating how altering elliptic parameters can reflect vari-
ous emotional states. Second, we implement our approach on a humanoid robot and
demonstrate its effectiveness in producing realistic and situation-appropriate expres-
sions.

In Section 2, we review the relevant literature on fuzzy set theory and its exten-
sions for emotional expression in humanoid robots. Section 3 introduces the funda-
mental definitions of E-IF matrices (E-IFIMs) and E-IF quads (E-IFQs). Section 4
provides a detailed explanation of the proposed E-IFS model, while Section 5 out-
lines the experimental setup used to validate our methodology. This study aims to
advance research in robotic emotional expression and contribute to ongoing efforts
to make humanoid robots more relatable and intuitive for human users. Section 6 ex-
amines the feasibility of the proposed E-IFS approach for simulating humanoid robot
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mouth expressions. Finally, Section 7 presents a summary of the study and suggests
directions for future research.

2 LITERATURE REVIEW

This section provides an extensive assessment of the literature on recent advance-
ments and theoretical developments related to fuzzy set models. Humanoid robots,
designed to mimic human features and capabilities, are becoming increasingly in-
tegrated into human society to enhance the overall quality of life. Most human
activities are inherently emotional, with varying degrees of intensity—ranging from
profound sadness to mild contentment. Fuzzy set theory serves as a valuable
framework for representing the emotions and actions of humanoid robots. The mod-
eling of facial features, including the mouth, eyes, and other expressive compo-
nents of humanoid robots, requires fuzzy logic rather than rigid classical logic mod-
els [1, 12]. If humanoid robots are to behave in a way that closely resembles human
behavior, the use of fuzzy set extensions in modeling is essential, as they provide a
more flexible and realistic representation of human emotions and decision-making
processes. In classical fuzzy logic [13], each element has only one membership
degree, with the non-membership degree being its complement. However, fuzzy
set extensions offer greater expressiveness in modeling uncertainty and ambigu-
ity, which are inherent in human emotions. A Scopus search for “Fuzzy Humanoid
Robot” yields 484 results, highlighting the growing academic interest in this field.
Figures 1 and 3 illustrate the key findings of the literature review on humanoid
robots.

The distribution of papers by year is shown in Fig. 1. The first three articles were
published in 1997. The year 2013 had the highest number of publications, account-
ing for 7.8% of the total. The distribution of publications on humanoid robots by

Fig. 1. Distribution of humanoid robot papers with respect to years.
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Fig. 2. Distribution of humanoid robot papers with respect to subject areas.

Fig. 3. Distribution of humanoid robot papers by their countries.

topic domain is illustrated in Fig. 2. The fields with the most publications include
engineering, computer science, and mathematics. The distribution of publications
on humanoid robots according to their country of origin is depicted in Fig. 3. China
is at the forefront of humanoid robot research, followed by South Korea and Tai-
wan. Given that human behavior is the result of a complex cognitive system, defining
uncertainty requires multiple factors. This is precisely what extensions of classical
fuzzy logic aim to achieve. Since these extensions are better suited for modeling hu-
man behavior than conventional fuzzy logic [13], we introduce them here. Several
extensions of fuzzy set theory have been proposed, including:

• Intuitionistic fuzzy sets (IFSs) (Atanassov, 1986 [14]),

• Interval-valued IFSs (Atanassov & Gargov, 1986 [15]),
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• Neutrosophic fuzzy sets (Smarandache, 1998 [16]),

• Hesitant fuzzy sets (Torra, 2010 [17]),

• Pythagorean fuzzy sets (Yager, 2013 [18]),

• Picture fuzzy sets (Cuong, 2013 [19]),

• q-rung orthopair fuzzy sets (Yager, 2017 [20]),

• Cubic sets (Mahmood, Abdullah & Bilal, 2017 [21]),

• Spherical fuzzy sets (Kutlu Gündogdu & Kahraman, 2019 [22]),

• Fermatean fuzzy sets (Senapati & Yager, 2020 [23]).

The study [24] provides a detailed comparison of the extensions of IFSs. The au-
thors of [24] demonstrated that an IFS can fully characterize a hesitant fuzzy set [17].
Additionally, they showed that Picture fuzzy sets [19], Cubic sets [21], Neutro-
sophic fuzzy sets [16], and Support-intuitionistic fuzzy sets [25] can all be rep-
resented by interval-valued IFSs (IVIFSs) [15]. In recent years, two further gener-
alizations of interval-valued intuitionistic fuzzy sets have been proposed: circular
(C-IFSs, [26]) and elliptic (E-IFSs, [11]). A C-IFS [26] is a circle of radius r that
centers the membership and non-membership degrees of IFSs [14]. An E-IFS [11]
represents the membership and non-membership degrees of IFSs [14] within an el-
lipse defined by its semi-major and semi-minor axes.

There are relatively few studies on fuzzy or intelligent humanoid robot model-
ing. In 2003, Kats and Vukobratovic [27] reviewed intelligent control methods for
humanoid robots. Wong et al. (2008) [28] investigated humanoid robot fuzzy con-
trol. Fang et al. (2019) [29] explored emotional learning models in fuzzy neural
networks. Kahraman and Bolturk (2021) [1] presented fuzzy set-based models for
simulating a humanoid robot’s emotions and movements. The facial expressions
of a humanoid robot were modeled in [30] using Pythagorean fuzzy sets [18] and
IFSs [14], based on emotional intensity. A humanoid robot’s facial expressions must
be contextually appropriate. Humans possess over 17 distinct facial expressions,
which cannot be fully captured using discrete sets [31]. These expressions include
happily surprised, happily disgusted, sadly fearful, sadly angry, sadly surprised, sadly
disqusted, fearfully angry, fearfully surprised, fearfully disgusted, angrily surprised,
angrily disgusted, disgustedly surprised, appalled, hateful, and awed. There are many
facial muscle articulations (also known as action units, or AUs) connected to every
emotional category. A distinctive characteristic of the visible image is produced by a
group of articulations of the facial muscles known as AU. Each emotional category
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corresponds to a set of facial muscle articulations, known as action units (AUs). AUs
define the characteristic features of facial expressions and contribute to the visible
representation of emotions.

The classical functions 0.2x2 − 3 {−2 < x < 2} and 0.5x2 − 3 {−2 < x < 2}
can be utilized. As shown in Figs. 4 and Fig. 5 [32], mouth mimics of the lower lip
from medium strong smile and strong smile are attempted to model. It is possible to

Fig. 4. Smile using the mathematical function 0.2x2 − 3 {−2 < x < 2}.

Fig. 5. Smile using the mathematical function 0.5x2 − 3 {−2 < x < 2}
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present the crisp function flower lip using the following equation: (1) [33]

(1) flower lip = c1x
2 − 3,−2 ≤ x ≤ 2 .

The humanoid robot should smile between a very weak and a medium strong
smile during an event when the parameter c1 varies between 0.1 and 0.36. The hu-
manoid robot should grin between a medium-strong and a very-strong smile at an
event when the parameter c1 changes between 0.5 and 0.9 [32].

3 ESSENTIAL TERMS FOR THE E-IFQS AND E-IFIMS

The elliptic IFSs are one of the newest developments of IFSs, having been introduced
by Atanasov in 2021 [11].

3.1 ELLIPTIC INTUITIONISTIC FUZZY QUADS (E-IFQS)

According to [35], an elliptic intuitionistic fuzzy quad (E-IFQ) is an object of the
following form: 〈a(p), b(p);u, v〉 = 〈µ(p), ν(p);u, v〉, where a(p) + b(p) = µ(p) +
ν(p) ≤ 1. The assertion p has two degrees of truth and falsehood, which are
a(p)(µ(p)) and b(p)(ν(p)), and a(p) + b(p) ≤ 1. u, v ∈ [0,

√
2] are the semi-

major and semi-minor axes of the ellipse. Let us consider the following two E-IFQs
be given: xu1,v1 = 〈a, b;u1, v1〉 and yu2,v2 = 〈c, d;u2, v2〉. We are going to define
an operation called ∗ ∈ {min,max}.

x ∨1∗ y = 〈max(a, c),min(b, d); ∗(u1, u2), ∗(v1, v2)〉;
x ∧1∗ y = 〈min(a, c),max(b, d); ∗(u1, u2), ∗(v1, v2)〉;
x ∧2∗ y = x+ y = 〈a+ c− a.c, b.d; ∗(u1, u2), ∗(v1, v2)〉;
x ∨2∗ y = x.y = 〈a.c, b+ d− b.d; ∗(u1, u2), ∗(v1, v2)〉;

α.x = 〈1− (1− a)α, bα; ∗(u1, u2), ∗(v1, v2)〉(for α > 0);

x−∗ y = 〈max(0, a− c),min(1, b+ d, 1− a+ c); ∗(u1, u2), ∗(v1, v2)〉.

The following relation for E-IFP comparison is proposed in [11].

x ≥ y if a ≥ c, b ≤ d, u1 ≤ v1 and u2 ≤ v2;
x ≥� y if a ≥ c;
x ≥� y if b ≤ d;

(2)

Two IF options, x = 〈a, b〉 and y = 〈c, d〉, can be ranked in the following manner:
IfRelliptic

x ≤ Relliptic
y , then x is a superior option [35], when the separation between the

perfect, beneficial option isRelliptic
x = 1

6(2−a−b)
(
|
√
2− u1|+ |

√
2− v1|+ |1−a|

)
for 〈1, 0;

√
2,
√
2〉 to x.
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There is a fixed universe E for us. Assume we have an E-IFP x = 〈a, b;u1, v1〉.
Let us expand [36]’s methods for de-intuitionistic fuzzification of circular IF triples
to include the following steps:

• The first step involves placing an elliptic form in the center of the Intuitionistic
Fuzzy Interpretation Triangle next to each member x ∈ E. The center can be
transformed in fuzzy pair by using Eq. 3 [36]:

(3)

〈
a

a+ b
,

b

b+ a

〉
• The second procedure involves using an elliptic form to juxtaposition three

points, X(x), XL(x), and XR(x), across the hypotenuse of the Intuitionistic
Fuzzy Interpretation Triangle, with coordinates for each element x ∈ E.

X(x) =
〈1 + a− b

2
,
1− a+ b

2

〉
,

X(L) =
〈
max

(
0,

1+a−b−
√
2r1 −

√
2r2

2

)
,min

(
1,

1−a+b+
√
2r1 +

√
2r2

2

)〉
and

X(R) =
〈
min

(
0,

1+a−b+
√
2r1 +

√
2r2

2

)
,max

(
1,

1−a+b−
√
2r1 −

√
2r2

2

)〉
.

3.2 DESCRIPTION, USAGE, AND RELATIONS TO ELLIPTIC IF IMS (E-IFIMS)

Index matrices (IMs) were first introduced in 1987 as a method for describing transi-
tions in generalized networks (see [37] and [38]). The constant set of indices, denoted
by I, will be used in the following discussion. A two-dimensional E-IFIM can be de-
scribed using the following definition:

A = [K,L, 〈µki,lj , νki,lj ; rfki,lj , rski,lj 〉]
l1 . . . lj . . . ln

k1 〈µk1,l1 , νk1,l1 ; rfk1,l1,hg , rsk1,l1,hg〉 . . . 〈µk1,lj , νk1,lj ; rfk1,lj , rsk1,lj 〉 . . . 〈µk1,ln , νk1,ln ; rfk1,ln , rsk1,ln〉
...

...
. . .

...
. . .

...
km 〈µkm,l1 , νkm,l1 ; rfkm,l1 , rskm,l1〉 . . . 〈µkm,lj , νkm,lj ; rfkm,lj , rskm,lj 〉 . . . 〈µkm,ln , νkm,ln ; rfkm,ln , rskm,ln〉

,

where the index sets K and L are subsets of the set I [35].
Similar to the definition given in [39], the 3-D E-IFIM definition builds upon

the 2-D E-IFIM definition. E-IFIMs A = [K,L, 〈µki,lj , νki,lj ; rfki,lj , rski,lj 〉] and
B = [P,Q, 〈ρpr,qs , σpr,qs ; δfpr,qs , δspr,qs ] can be used with a variety of methods,
relationships, and operators, defined in [35].
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4 HUMANOID ROBOT MOUTH EXPRESSION MODELING USING ELLIPTIC INTU-
ITIONISTIC FUZZY SETS

We propose the following E-IF algorithm to identify various humanoid robot lower
lip expressions by extending the IF method from [33] and incorporating the expert-
based approach from [35].

Step 1. To determine different parameter values cj (j = 1, . . . , n) for the function
representing humanoid robot lower lip expressions {k1, . . . , ki, . . . , km}, a profes-
sional evaluation by experts {d1, . . . , ds, . . . , dD} is required.

An intuitionistic fuzzy (IF) index matrixEV R[K,C,E, {evki,cj ,ds}], is then con-
structed: where K = {k1, . . . , ki, . . . , km} represents the set of different lower lip
expressions, C = {c1, . . . , cj , . . . , cn} denotes the set of expression parameters and
E = {d1, . . . , ds, . . . , dD} corresponds to the set of expert evaluators. The robot’s
bottom lip is represented in its various states within the set K. One parameter of the
robot’s lower lip function is denoted as cj (j = 1, . . . , n). The competency coeffi-
cients of the experts, denoted as rs (s ∈ E), need to be specified. The index matrix
(IM) is constructed as follows:

EV R∗[K,C,E, {ev∗ki,cj ,ds}]
= r1 · prK,C,d1EV ⊕(◦1,◦2) r2 · prK,C,d2EV ⊕(◦1,◦2) · · · ⊕(◦1,◦2) rD · prK,C,dDEV.

The final expert evaluation result is given by

EV R := EV R∗, where (evrki,cj ,ds = evr∗ki,cj ,ds , ∀ki ∈ K,∀cj ∈ C,∀ds ∈ E).

Since certain uncontrolled factors may have changed, the experts may be uncer-
tain about their conclusions. To address this uncertainty, the following procedures
are used to convert the assessments into intuitionistic fuzzy parameters (IFPs). Let
us define the current set of intervals for expert ratings of each applicant based on all
criteria at a given moment hf as: [p1,fki,cj ,ds ; p2,fki,cj ,ds ] ∀ki ∈ K,∀cj ∈ C,∀ds ∈ E.

(4) Amin,i,j,s,f = min p1,fki,cj ,ds
1≤i≤m,1≤j≤n,1≤s≤D

< max p2,fki,cj ,ds
1≤i≤m,1≤j≤n,1≤s≤D

= Amax,i,j,s,f .

Between [p1,fki,cj ,ds ; p
2,f
ki,cj ,ds

], at a time point hf , we build the cj-th parameter and
the ds-th expert evaluation for the ki-th lower lip event using the format of IFP [34]
as follows:

µki,cj ,ds,hf =
p1,fki,cj ,ds −Amin,i,j,s,f

Amax,i,j,s,f −Amin,i,j,s,f
,

νki,cj ,ds,hf =
Amax,i,j,s,f − p2,fki,cj ,ds
Amax,i,j,s,f −Amin,i,j,s,f

.

(5)
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If the expert assessments that meet the conditions are IFPs, this change is not ac-
complished. Some of the experts’ conclusions can be incorrect from an IF standpoint.
A variety of techniques for altering the evaluations of flawed experts are examined in
[34]. Then, an IF index matrixEV [K,C,E, {evki,cj ,ds}], K={k1, . . . , ki. . . . , km},
C={c1, . . . , cj , . . . , cn} and E={d1, . . . , ds, . . . , dD} is constructed by transform-
ing the IM EV R using (5). The elements {evki,cj ,ds} = 〈µki,cj ,ds , νki,cj ,ds〉 (for
1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ s ≤ D) of the matrix EV depend on the uncertainty
and are IF valuations of the ds-th expert for the ki-th lower lip expression by the
cj-th parameter of the lower lip function of the robot. EV := EV ∗(evki,cj ,ds =
ev∗ki,cj ,ds , ∀ki ∈ K,∀cj ∈ C,∀ds ∈ E). Next, we go on to Step 2.

Step 2. The degrees of membership and non-membership of the E-IFQs are de-
termined by the elements of the matrix EV using the three aggregation operations
αK,#1,∗, αK,#2,∗, and αK,#3,∗. These operations provide evaluations of the ki-th
lower lip expression based on the cj-th parameter (j = 1, . . . , j, . . . , n) of the lower
lip function at a given moment hf /∈ E:

PImin[K,hf , C, {piminki,hf ,cg
}] = αE,#1(EV

∗, hf )

=



cj hf

k1
D

#1

s=1

〈µk1,cj ,ds , νk1,cj ,ds〉
...

...

km
D

#1

s=1

〈µkm,cj ,ds , νkm,cj ,ds〉

| cj ∈ C


;

PImax[K,hf , C, {pimaxki,hf ,cg
}] = αE,#3(EV

∗, hf )

=



cj hf

k1
D

#3

s=1

〈µk1,cj ,ds , νk1,cj ,ds〉
...

...

km
D

#1

s=3

〈µkm,cj ,ds , νkm,cj ,ds〉

| cj ∈ C


PI∗ = PImin ⊕(◦1,◦2,∗) PImax .

Next, as elements in a matrix, the centers of the E-IFQs utilized to assess the
parameters for the lower lip function are expressed as follows:

PI[K,hf , C, {piki,hf ,cg}] = αE,#2(PI
∗, hf ), (hf /∈ E).
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E-IFIM A[K,C, hf{aki,cj ,hf }] can now be calculated, which reflects the most re-
cent evaluations of the settings for the robot mouth in various scenarios utilizing the
methods from [35]:

hf c1 . . . cn
k1 〈µak1,c1 , ν

a
k1,c1

; rfak1,c1 , rs
a
k1,c1
〉 . . . 〈µak1,cn , ν

a
k1,cn

; rfak1,cn , rs
a
k1,cn
〉

...
... . . .

...
km 〈µakm,c1 , ν

a
km,c1

; rfakm,c1 , rs
a
km,c1

〉 . . . 〈µakm,cn , ν
a
km,cn

; rfakm,cn , rs
a
km,cn

〉

,

where K = {k1, . . . , ki, . . . , km} , i = 1, . . . ,m; C = {c1, . . . , cj , . . . , cn} , j =
1, . . . , n; its elements aki,cj ,hf (for i = 1, . . . ,m; j = 1, . . . , n) are created as E-
IFQs by transforming the IFPs piT ki,cj ,hf using the following steps:

for j = 1 to n, i = 1 to m

µki,cj ,hf = µpi
ave

ki,cj ,hf
; νki,cj ,hf = νpi

ave

ki,cj ,hf
,

rfki,cj ,hf =

√√√√√PI leftCB,µ
ki,cj ,hf

2
+

{
PI

rightCB,µ
ki,cj ,hf

2
− PI leftCB,µ

ki,cj ,hf

2

PI
rightCB,ν
ki,cj ,hf

2
− PI leftCB,ν

ki,cj ,hf

2

}2

.P I leftCB,ν
ki,cj ,hf

2

rsaki,cj ,hf =

√√√√√PI leftCB,µ
ki,cj ,hf

2
.

{
PI

rightCB,ν
ki,cj ,hf

2
− PI leftCB,ν

ki,cj ,hf

2

PI
rightCB,µ
ki,cj ,hf

2
− PI leftCB,µ

ki,cj ,hf

2

}2

+ PI leftCB,ν
ki,cj ,hf

2
.

Next, we go on to Step 3.

Step 3. Now, a 3-D E-IFIM PK is created, and the experts decide how to weight
each evaluation parameter for the lower lip function in an instant hf :

PK[K,C, hf , {pkki,cj ,hf }] =

hf c1 . . . cn
k1 pkk1,c1,hf . . . pkk1,cn,hf
...

... . . .
...

km pkkm,c1,hf . . . pkkm,cn,hf

,

whereK={k1, . . . , ki, . . . , km} , C={c1, . . . , cj , . . . , cn} and the elements pkki,cj ,hf
are E-IFQs. The evaluation E-IFIM is given by

(6) FI[K,C, hf , {fiki,cj ,hf }]=A⊗(◦1,◦2,∗,∗)PK, ∀i=1, . . . ,m; ∀j=1, . . . , n.
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This matrix contains all E-IF estimates for the ki-th lower lip event corresponding
to the cj-th parameter of the lower lip function. The choice of the aggregation opera-
tor ∗ depends on the level of uncertainty: if there is more uncertainty, then ∗ = max;
if there is less uncertainty, then ∗ = min. The second technique can be applied to the
de-intuitionistic fuzzification of: fiki,lj ,hf = 〈µyki,lj ,hf , ν

y
ki,lj ,hf

; rfaki,cj ,hf , rs
a
ki,cj ,hf

〉
for (i = 1, . . . ,m; j = 1, . . . , n) from the previous section. Let us obtain

〈µy,fuzzy
ki,lj ,hf

, ν
y,fuzzy
ki,lj ,hf

〉, 〈µy,fuzzyLeft
ki,lj ,hf

, ν
y,fuzzyLeft
ki,lj ,hf

〉 and 〈µy,fuzzyRight
ki,lj ,hf

, ν
y,fuzzyRight
ki,lj ,hf

〉 .

Following that, we defuzzify the fuzzy pairings into distinct numerical values: pfiki,cj ,hf ,

p
fileft
ki,cj ,hf

and p
firight
ki,cj ,hf

for (i = 1, . . . ,m; j = 1, . . . , n) using Eq. 5.

5 CASE STUDY: USING ELLIPTIC INTUITIONISTIC FUZZY SETS TO EXPRESS

MOUTH MOVEMENTS IN HUMANOID ROBOTS

Let us assume that the robot’s lower lip can be in three states: k1 - between a strong
smile and a super strong smile; k2 - between a medium strong smile and a strong
smile and k3 - between a very weak smile and a medium strong smile. Assume that
the evaluation process for the parameter c1 in the E-IF function (1) for the lower lip
involves three experts. The corresponding assessment is given as follows:

d1 c1
k1 〈0.80, 0.20〉
k2 〈0.50, 0.20〉
k3 〈0.10, 0.20〉

,

d2 c1
k1 〈0.90, 0.10〉
k2 〈0.60, 0.10〉
k3 〈0.20, 0.10〉

,

d3 c1
k1 〈0.70, 0.30〉
k2 〈0.40, 0.30〉
k3 〈0.30, 0.30〉


Then, these are the rank coefficients of the experts:

{r1, r2, r3} = {〈0.80, 0.10〉, 〈0.70, 0.10〉, 〈0.90, 0.10〉}.

The evaluation IM EV ∗[K,C,E, {ev∗}] is made using the subsequent proce-
dures:

EV ∗ = r1prK,C,d1EV ⊕(◦1,◦2) r2prK,C,d2EV ⊕(◦1,◦2) r3prK,C,d3EV ;EV := EV ∗

Then, the IMs are created: PI∗ = PImin ⊕(◦1,◦2,∗) PImax and
PI[K,hf , C, {piki,hf ,cg}] = αE,#2(PI

∗, hf ), (hf /∈ E) whose components are the
center coordinates of the E-IFQs as determined by various lower lip events for the
parameter c1. Let’s compute E-IFIM A[K,C, hf{aki,cg ,hf }] now. It shows the latest
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evaluations of the parameter c1 based on various lower lip events.

(7)

hf c1
k1 〈0.8, 0.2; 0.1, 0.05〉
k2 〈0.5, 0.2; 0.1, 0.05〉
k3 〈0.2, 0.2; 0.1, 0.05〉

At this point, a 3-D E-IFIM PK determines the priority of the parameter c1 at a
moment hf for the ki-th lower lip event:

(8) PK[K,C, hf , {pkki,c1,hf }] =

hf c1
k1 〈0.90, 0.10; 0.02, 0.01〉
k2 〈0.90, 0.10; 0.02, 0.01〉
k3 〈0.90, 0.10; 0.02, 0.01〉

The evaluation E-IFIM is given by: FI[K,C, hf , {fiki,c1,hf }] = A ⊗(◦1,◦2,min,min)

PK, for 1 ≤ i ≤ 3. This matrix includes the estimates of the ki-th lower lip state
based on the optimistic case. The evaluation E-IFIM is given by:

(9) FI[K,C, hf , {fiki,c1,hf }] = A⊗(◦1,◦2,min,min) PK, for 1 ≤ i ≤ 3.

The resulting evaluation matrix FI is:

(10) FI =

hf c1
k1 〈0.72, 0.28; 0.02, 0.01〉
k2 〈0.45, 0.28; 0.02, 0.01〉
k3 〈0.18, 0.28; 0.02, 0.01〉

Let x be a member of the set [−2, 2]. In the interval of fuzzy pairs, the E-IFQ

〈0.72, 0.28; 0.02, 0.01〉

is changed from 〈0.7, 0.3〉 to 〈0.74, 0.26〉. This interval is then defuzzified as [0.8, 0.96].
Thus, the function for the first lower lip state is obtained as: fk1 = [0.8, 0.96]x2 −
3, −2 ≤ x ≤ 2. The procedures for the remaining two lower lip states are analo-
gous, yielding: fk2 = [0.26, 0.42]x2 − 3, fk3 = [−0.12,−0.28]x2 − 3.

6 DISCUSSION

The results demonstrate the effectiveness of E-IFSs in modeling humanoid robot
mouth expressions that accurately reflect different emotional states. By leveraging
the unique properties of E-IFSs, our approach captures emotional nuances more flex-
ibly and realistically than traditional methods. A key advantage of the E-IFS model is
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its ability to handle uncertainty and imprecision in human emotions. Unlike fixed ge-
ometric transformations or predefined templates, E-IFS enables dynamic adjustments
of mouth shapes based on varying emotional intensities. This adaptability is crucial
for humanoid robots interacting in diverse real-world environments. The integration
of elliptic parameters allows smooth transitions between emotions, while E-IF logic
provides a richer and more nuanced representation by incorporating membership,
non-membership, and hesitation degrees. Despite its benefits, the E-IFS model has
some limitations. Its computational complexity, O(Dm2n2), may pose challenges
for real-time applications, requiring further optimization for resource-constrained en-
vironments. Future research should explore the model’s adaptability across different
humanoid designs and its application in multi-modal emotion representation, includ-
ing upper lip, eye, and eyebrow expressions. Another important direction is evalu-
ating user perception and acceptance. While the technical performance of the E-IFS
model is promising, user studies assessing the naturalness and emotional resonance
of the robot’s expressions will be essential for refining and validating the model.

7 CONCLUSION

This paper presented a novel approach for modeling humanoid robot mouth expres-
sions using E-IFS, providing a flexible framework for representing the complexity of
human emotions. By integrating E-IF logic, the model effectively generates realistic
and contextually appropriate mouth expressions, enhancing human-robot interaction.
The E-IFS-based model offers key advantages over traditional methods, particularly
in handling uncertainty and adapting to varying emotional intensities. Its ability to
capture nuanced expressions makes it a promising step toward more natural and in-
tuitive robotic communication. In conclusion, developing emotionally expressive
humanoid robots is essential for improving human-robot interactions. The E-IFS ap-
proach contributes to this goal by creating robots that are both functionally effective
and emotionally engaging. Future work will address current limitations and explore
its broader applications in multi-modal emotion representation and user perception.
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