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Abstract. An analytical solution for a specific case of the forced Duffing
oscillator is proposed. The excitation force contains two harmonics with
significant difference frequencies. This case corresponds to a presence of a
defect in the machinery and is in the art of the machinery vibration diag-
nostics. The results obtained show an amplitude modulation. Therefore,
the presence of an amplitude modulation in the vibration signal may be
used as an indicator for a malfunction. Analytical solution derived clar-
ifies how the amplitude modulation occurs. Also, a numerical solution
is realized and compared with the analytical one. For this, the Duffing
equation is solved numerically and then, the spectrograms of vibrations
are obtained through a Discrete-time Fourier Transform.
Key words: Machine vibration, monitoring, incipient faults, early detec-
tion, vibration diagnostic, nonlinear vibrations, Duffing equation, Duffung
oscillator, polyharmonic force excitation, analytical solution, numerical
solution, spectrograms, discrete-time Fourier transform.

1. Introduction

Machine monitoring and early detection of incipient faults gives an abil-
ity to avoid human casualties and significant financial losses. Machine moni-
toring aims to survey the machine health at critical locations, e.g. gears and
bearings, and predict a future failure. A scheduled stop for maintenance can
be made and the damaged element can be replaced at a certain stage of defect
progress. Thus, the production runs without unexpected delays. Machine vi-
bration monitoring uses the so called signature analysis, i.e. the characteristic
vibration signature of the monitored machine element is investigated. To ob-
tain such signatures, it is needed nonlinear models and advanced methods to
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be used like Finite Element Method [1, 2, 3, 4], Hilbert Transform [5, 6, 7, 8,
9, 10], and Wavelet analysis [11, 12, 13, 14, 15].

This work gets a simple and basal fact, and builds on it a composition
of traditional analytical approach and advanced numerical methods for solving
of differential equations and signal processing. The mentioned sample and
basal fact is that when machinery has a defect, frequently this results in a
polyharmonic force excitation acting on the supports. The harmonics of this
force have significant difference in the frequencies. For an example, a gear with
a crack in one tooth generates a force excitation with two components: one with
higher frequency that occurs when every healthy tooth goes into a contact, and
another one with lower frequency only when the tooth with crack goes into a
contact. The most appropriate is modelling the stiffness with a cubic function
of the displacement [16], if we take in the account nonlinearity of the supports
(like bearings and housings). There is also a point mass and this becomes the
good known Duffing oscillator [17, 18].

The Duffing oscillator is comprehensively investigated for many cases
like: free vibrations [17, 18]; a single harmonic force excitation [17, 18, 19, 20];
a force excitation that contains two harmonics with equal [21] or similar [22]
frequencies; an excitation that contains a harmonic force and a noise [23]; and
a piece-wise force excitation. In [23], the application of weak signal detection
based on chaotic oscillator is studied. Results obtained show that the chaotic
oscillator can detect weak signal which is submerged in the background of large
noise.

For a single harmonic force excitation, the Duffing oscillator is described
by equation:

(1) ẍ+ 2γẋ+ αx+ βx3 = F cos(pt+ ϕ),

and has a following solution [17, 18, 19, 20]:

(2) x =
αA+ 3

4
βA3 − F cos (φ)

p2
cos (pt)

−
2γpA− F sin (φ)

p2
sin (pt) +

1

36

βA3

p2
cos (3pt) .

This solution contains two harmonics: one with frequency p, and an-
other with frequency 3p. We need to find what will be the difference when the
excitation force is polyharmonic as these correspond to presence of a defect in
machinery.
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The objective of the work presented in this research is to obtain the
characteristic vibration signature of polyharmonic force with significant differ-
ence in the frequencies of the harmonics, when it acts on a machine element
with nonlinear stiffness. This work would be beneficial for machinery vibration
diagnostics, as this may give a way to recognize a problem in the health of the
machine.

2. Mechanical and mathematical model of the investigated

system

The mechanical model of the investigated system is sown in Fig. 1 [17,
18, 19, 20, 21, 22, 23]. This is discrete model with one degree of freedom. The
model parameters are: a point mass m0, a multiplier α0 for linear stiffness, a
multiplier β0 for cubic stiffness, and a coefficient of linear viscous friction γ0.

Fig. 1. Mechanical model of the investigated system

The corresponding mathematical model is commonly known [17, 18, 19,
20, 21, 22, 23]. It is the Duffing equation and already has been given by Eq.
(1). Unlike those investigations, in this work the excitation force consists of
two harmonics with significantly different frequencies:

(3) mẍ+ γ0ẋ+ α0x+ β0x
3 = F10 cos(pt+ ϕ1) + F20 cos(npt+ ϕ2).

In this equation, n is multiplier which takes into the account the differ-
ences between the frequencies of the harmonics. Also, every harmonic possesses
its own amplitude F and phase φ. One can write:

(4) ẍ+ 2γẋ+ αx+ βx3 = F1 cos(pt+ ϕ1) + F2 cos(npt+ ϕ2),
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when:

(5) F1 =
F10

m
;

(6) F2 =
F20

m
;

(7) γ =
γ0

2m
;

(8) α =
α0

m
;

(9) β =
β0

m
.

In this work, Eq. (4) is solved analytically and numerically. Then, the
results are compared and conclusions are derived.

To be suitable to solving analytically, two simplifications are made:
– the force acting on the supports is applied as an external excitation

force. Actually, it is an internal force and depends simultaneously on the defect
and the form of the supports parameters;

– this excitation force is constructed by only two harmonics. It is needed
more harmonics in real machinery.

3. Analytical solution

By applying an elementary trigonometric relation, one can obtain form
Eq. (4):

(10) ẍ+ 2γẋ+ αx+ βx3 = F1 [cos (pt) cos (ϕ1)− sin (pt) sin (ϕ1)]

+ F2 [cos (npt) cos (ϕ2)− sin (npt) sin (ϕ2)] .

The next step is to make the following assignments:

(11) C1 = F1 cos (φ1) ; S1 = F1 sin (φ1) ,

(12) C2 = F2 cos (φ2) ; S2 = F2 sin (φ2) .
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and the differential equation becomes:

(13) ẍ+2γẋ+αx+βx3 = C1 cos (pt)−S1 sin (pt)+C2 cos (npt)−S2 sin (npt)

For the aim of this investigation, it is needed to find polyharmonic
solution in the form:

(14) x = A1 cos (pt) +A2 cos (npt) .

After substituting this solution in Eq. (13), one can obtain:

(15) ẍ = −β[A1 cos(pt) +A2 cos(npt)]
3 − α[A1 cos(pt) +A2 cos(npt)]

− 2pγ[−A1 sin(pt)− nA2 sin(npt)] + C1 cos(pt)

− S1 sin(pt) + C2 cos(npt)− S2 sin(npt).

Then, applying the following trigonometric relation:

(16) cos3 (a) =
3

4
cos (a) +

1

4
cos (3a) ,

Eq. (15) becomes:

(17) ẍ = −
3

4
βA3

1 cos(pt)−
1

4
βA3

1 cos(3pt)

− 3βA1
2A2 cos

2 (pt) cos (npt)− 3βA1 A2
2 cos (pt) cos2 (npt)

−
3

4
βA2

3 cos (npt)−
1

4
βA2

3 cos (3npt)− αA1 cos (pt)

− αA2 cos (npt) + 2pγA1 sin (pt) + 2pγnA2 sin (npt)

+ C1 cos (pt)− S1 sin (pt) + C2 cos (npt)− S2 sin (npt) .

Now, one can use an elementary trigonometric relation and obtain:

(18) ẍ = −
3

4
βA3

1 cos (pt)−
1

4
βA3

1 cos (3pt)

−
3

2
βA2

1A2 cos (npt)−
3

2
βA2

1A2 [cos (2pt) cos (npt)]−
3

2
βA1A

2

2 cos (pt)

−
3

2
βA1A

2

2 [cos (pt) cos (2npt)]−
3

4
βA3

2cos (npt)−
1

4
βA3

2 cos (3npt)

− αA1 cos (pt)− αA2 cos (npt) + 2pγA1 sin (pt) + 2pγnA2 sin (npt)

+ C1 cos (pt)− S1 sin (pt) + C2 cos (npt)− S2 sin (npt) .
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By applying the following basic trigonometric relation:

(19) cos (a) cos (b) =
1

2
[cos (a+ b) + cos (a− b)] ,

one can write:

(20) ẍ = −
3

4
βA3

1 cos (pt)−
1

4
βA3

1 cos (3pt)−
3

2
βA2

1A2 cos (npt)

−
3

4
βA2

1A2 [cos (npt+ 2pt) + cos (npt− 2pt)]−
3

2
βA1A

2

2 cos (pt)

−
3

4
βA1A

2

2 [cos (2npt+ pt) + cos (2npt− pt)]−
3

4
βA3

2 cos (npt)

−
1

4
βA3

2 cos (3npt)− αA1 cos (pt)− αA2 cos (npt) + 2pγA1 sin (pt)

+ 2pγnA2 sin (npt) + C1 cos (pt)− S1 sin (pt) + C2 cos (npt)− S2 sin (npt) .

After double integration of Eq. 20, the analytical solution of the Eq. 4 is found,
as follows:

(21) x =

[

3

16

β

p2
A3

1 +
3

2

β

p2
A1A

2

2 +
α

p2
A1 −

C1

p2

]

cos (pt) +

[

1

36

β

p2
A3

1

]

cos (3pt)

+

[

3

4

β

n2p2
A3

2 +
3

2

β

n2p2
A2

1A2 +
α

n2p2
A2 −

C2

n2p2

]

cos (npt)

+
3

4
βA2

1A2

[

1

n2p2 + 4p2
cos (npt+ 2pt) +

1

n2p2 − 4p2
cos (npt− 2pt)

]

+
3

4
βA1A

2

2

[

1

4n2p2 + p2
cos (2npt+ pt) +

1

4n2p2 − p2
cos (2npt− pt)

]

+

[

1

36

β

n2p2
A3

2

]

cos (3npt)+

[

S1

p2
−

2γA1

p

]

sin (pt)+

[

S2

n2p2
−

2pγA2

np2

]

sin (npt) .

From equation (21), one can see that there are harmonics with fre-
quencies p, 3p, np, 3np, np + 2p, np − 2p, 2np + p, 2npt − p. The sideband
frequencies [np+ 2p, np− 2p] and [2np+ p, 2npt− p] are an evidence for an
amplitude modulation and may be used as an indicator for defect presence.

4. Numerical solution

It is necessary to choose values for model parameters to find a numerical
solution. It is reasonable such values to be used of the multipliers α and β in Eq.
4 that correspond to bearing’s stiffness in machines. In this investigation is used
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α = 5.42e4 N/mm and β = 6.88e10 N/mm3 according to [16]. The point mass
value is assumed to be m = 10 kg. Then, for the coefficient of linear viscous
friction is used γ = 55 Ns/mm, according to Eq. 7 and [24]. The excitation
force amplitudes are assumed to be equal as follows: F10 = F20 = 2 kN.

To solve numerically the Eq. 4, in this work is used Livermore Solver
for Ordinary Differential Equations (LSODE) [25], which is implemented in
function NDSolve of Wolfram Language. The LSODE is composed of stiff
and non-stiff methods which switch when stiffness is sensed. The solver uses
Adams method for the non-stiff regions and a variable step Backward Difference
Formula (Euler’s method) for the stiff regions.

A preliminary test is conducted before proceeding to solve Eq. 4. To
check the suitability of the linear viscous friction coefficient value that has been
chosen, the following equation is solved first:

(22) ẍ+ 2γẋ+ αx+ βx3 = F1 PieceWise(t)

where:

PieseWise(t) =

{

1, t < 0.1
0, t ≥ 0.1

The solution is plotted in Fig. 2, and one can make an expert evaluation that
the observed decay time of 0.1 seconds is normal for machinery supports.

Fig. 2. Impulse response of the investigated system
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Fig. 3. Time diagram of the forced vibrations

Finally, the Eq. 4 is solved numerically for p = 3 Hz and n = 40. There-
fore, according to Eq. 21, in the results should be harmonics with frequencies:

3, 9, 120, 120 + 6, 120− 6, 240 + 3, 240− 3.

Through the solver used, results x(t) in time domain are obtained, see Fig. 3.
Then, they are transformed to frequency domain trough Discrete-time Fourier
Transform (DFT):

(23) x(f) = DFT [x(t)]

or

(24) x(f) =
1
√
n

n
∑

t=1

x(t)e
2πi(f−1)(t−1)

n ,

where n is the length of x (t) and f is the frequency in Hertz. The spectrograms
obtained are presented in Figs 4 to 6. One can observe a clear presence of the
above mentioned harmonics.
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Fig. 4. Global view of the vibrations spectrogram

Fig. 5. The vibrations spectrogram, zoomed from 0 to 130 Hz



12 Svetlin Stoyanov

Fig. 6. The vibrations spectrogram, zoomed from 230 to 250 Hz

5. Analysis of the results

The analytical solution proposed and the numerical one has similar
results and show the presence of two phenomenon: frequency multiplication
and amplitude modulation.

5.1. Frequency multiplication

In the results obtained possess harmonics with frequencies that are from
a multiplication of excitation frequency with an integer. This may be explained
by Eq. 16. One can write this equation as a function of time and with simple
amplitude of two units, as follows:

(25) [2 cos (2 2π t)]3 = 23
[

3

4
cos (2 2π t) +

1

4
cos (6 2π t)

]

,

or:

(26) [2 cos (2 2π t)]3 = 6cos (2 2π t) + 2 cos (6 2π t) .

The left side of this equation is plotted in Fig. 7a. Then, DFT is
performed and the spectrum obtained is shown in Fig. 7b. One can see two
harmonics with following parameters:

– frequency 2 Hz and amplitude 5.4 units,



Analytical and Numerical Investigation on the Duffing Oscilator. . . 13

– frequency 6 Hz and amplitude 1.9 units,

which frequencies are exactly as the frequencies in the right side of the equation
and their amplitudes are approximately the same as the amplitudes in the right
side of the equation, but a little differences exist because of the leakage, when
the transform is performed.

(a) (b)

Fig. 7. Time (a) and frequency (b) illustration of a frequency multiplication due to
raising a harmonic to 3-rd power

5.2. Amplitude modulation

The analytical solution and the numerical one prove the existence of an
amplitude modulation in vibration when the force excitation is polyharmonic
unlike the case when the excitation force contains a single harmonic. From Eq.
21 and Figs 4 to 6, one can see that the amplitude modulation that occurs has
two sidebands at frequencies [np+ 2p, np− 2p] and [2np+ p, 2npt− p]. There-
fore, it is a Double Sideband Modulation (DSB) and is due to relation described
by Eq. 19. One can write this equation in function of time and assume exem-
plary amplitude of two units, as follows:

(27) 2 cos (2 2π t) 2 cos (10 2π t)

=
1

2
[2 cos ((10 + 2) 2π t) + 2 cos ((10− 2) 2π t)] .

The left side of this equation is plotted in Fig. 8a. One can see that
there is s polyharmonic signal as is in the right side of the equation. The result
from DFT is shown in Fig. 8b. One can see the following sidebands:
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(a) (b)

Fig. 8. Time (a) and frequency (b) illustration of an amplitude modulation due to
multiplying of two harmonics with significant frequencies difference

– frequency 8 Hz, amplitude 1.84 units,
– frequency 12 Hz, amplitude 1.95 units,

which frequencies are exactly as the frequencies in the right side of the equation
and their amplitudes are approximately the same as the amplitudes in the right
side of the equation, but a little differences exist because of the leakage when
the transform is performed.

In other words, the amplitude modulation is described by the mathe-
matical multiplication operator. Therefore, when many harmonics acts on a
nonlinear stiffness, they are multiplied for difference with when they act on a
linear stiffness and the superposition principle is valid.

6. Conclusions

The analytical solution obtained in this work explains the amplitude
modulation occurrence, when a polyharmonic force excitation acts on a support
element with nonlinear stiffness. This can give an indicator for defect presence.
The numerical solution proves the analytical results.

This work not fully solves the investigated problem. This is due to two
facts, concerning the force acting on the supports:

– the force acting on the supports is applied as an external excitation
force. Actually, it is an internal force and depends simultaneously on the defect
and the form of the supports parameters;

– this excitation force is constructed by only two harmonics. It is needed
more harmonics in real machinery.
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The analytical approach may not be suitable for investigating of this,
but there is a way to solve through finite element analysis. This traces the
future path of this investigation.
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