BBJATAPCKA AKALEMHSA HA HAVKUTE BULGARIAN ACADEMY OF SCIENCES
TEOPETHUHA U NPHJAOXHA MEXAHHWFA THEORETICAL AND APPLIED MECHANICS
Cotbus, 1987, roa. XVIIl, Ne d Sofia, 1987, Year XVIIl, No 4

Similarity analysis of a dynamic problem
of coupled thermoelasticity
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1. Introduction

An effective method of analysing one-dimensional problems is to con-
struct similarity solutions which, as a general rule, have a simple space-time structure.
The essential property of similarity is that the profiles of the examined quantitics
remain constant in time. Thus the similarity solution keeps the main features of the
solution. Therefore, on the one hand, qualitative analysis of the solution could be
carried out, and, on the other hand, similarity solutions could be used as a convenient
test for verifying the accuracy of the numerical procedures. This is of great value in
relation with nonlinear problems.

The application of the method of similarity solutions to one-dimensional problems
transforms the partial differential equations (PDE) into ordinary differential equations
(ODE). From mathematical point of view it simplifies the problems and in a number
of cases exact special solutions can be found.

In nonlinear problems, since the principle of superposition does not hold, exact
special solutions sometimes appear not to be useful. However, these special solutions
represent the asymptotics of a wide class of other more general solutions that corres-
pond to various initial conditions [1, 2]. Under these circumstances the value of exact
special solutions increases considerably.

Similarity solutions for thermoelastic problems are studied in [3—6]. In [3, 4] soluti-
ons of the type of travelling wave for the linear dynamic problem are investigated.
The dynamic problem with finite velocity of heat transfer is considered in [5]. In [6]
two classes of similarity solutions are obtained for the dynamic problem with tempera-
ture dependent coefficient of thermal conductivity.

The purpose of the present paper is to establish some similarily solutions of a
one-dimensional dynamic problem of coupled thermoelasticity. The material is assumed
to be homogeneous and isotropic. the coefficient of thermal conductivity is considered
to be strain dependent. A class of similarity solutions of the type of travelling wave
is obtained. Another class of solutions is constructed by ihe method of generalized
separation of variables.

2. The governing equations

For the one-dimensional case the governing equations of coupled ther-
moelasticity are [7, 8]:
J6
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(1) p o — (A+2u) Er%"r(% +2p)as==F(x, #), (motion)
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2
©) cp %—aé(kg%)+(3x+2p)aro%: Wix, ) (heat transfer),
where x is the space variable, # — time, # — displacement, 8=7—T7, — change of
the body temperature from a reference one 7, & — coefficient of heat conductivity,
A and p — Lamé’s elastic constants, ¢ — specific heat, o — coefficient of thermal
expansion, p — density, F — body forces, and W — heat sources.

It is convenient to write the equations (1), (2) in dimensionless form [9]:

%u  u 00
00 0 00 d%u
© o a2 ax) 0 355 W B
where

ay=(3M+21)aTo/(A+2p),  ag=(3r+2p)a/cp,

and the same latter is retained to denote the corresponding dimensionless quantity.
The parameter n=a,a, is called a coupling parameter. For some materials n<<l.
For example, the data for four common metals at 20°C are [7]:
Aluminium 3.56 102
Iron (Steel) 1.14x10-%
Copper 1.68 102
Lead 7.33xX10~2

In general, the coefficient of thermal conductivity £ depends on the temperature,
its gradient and the strain [3]. In the present analysis &£ will be assumed to be strain
dependent as follows:

%) k=(0u/dx)", n>0, n=const.

3. Solution of the type travelling wave

The system (3), (4) is of a mixed hyperbolic -— parabolic type. Such systems
admit solution representing waves travelling without change of shape or magnitude,
that is, the waves have constant profile. Mathematically such solutions depend on x
and ¢ through the variable s=x-—D¢, where D is the constant velocity of the wave.
Thus a solution in the following form is considered:

(6) u(x, t)y=u(s), O(x, £)=06(s), s=x-—Dt.

Substituting (6) into the system (3), (4) an equivalent system of ODE is obtained
d2 do ;
(D*—1) T 0, D= Fs),
@) pa . d [(du " de D¥E_w
‘JE+K{(E‘§> z;} + @D g = WIs). |
Consider a wave propagation in an infinite elastic medium. For simplicity, let us

take the special case in which the medium is unstrained, and its initial temperature is
zero. Thus the above system will be integrated by considering the conditions:

(8) 0(x) =0, {(du/ds) d8}ds)}s—c,=0, u(x,)=0, (du/ds)s-r=0.
It is assumed that the wave front is at the point s=x,, and this point moves with
constant velocity, Presuming that the body is not subject to body forces and heat
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sources (i.e., F=0, W=0) the following particular temperature and displacement solu-
tion is found:

0(s)= [B(s—x)I"",

)= (o) et DA [BG — )]
Here the following notations are introduced:
A=D(a,a,+1—-D%/(D*—1), B=nA[(1—D?/a,].

Taking into account a consequence of the Clausius-Duhem inequality, the velocity
D should satisfy the following condition:

(10) De{(0, DUV T+a,a; +o0)}
(the proof is given in the Appendix).
For 1=D=<{T+a,a, the system (7) has no suitable solution.

Once the temperature and displacement are determined, the stress function can be
expressed as:-

©)

(1 ofs)="22 —q,0= 2D “ID 8(s) = D[nA(s—x)].

Note that the trivial solution
(12) 0(x, £)=0, w(x, £)=0

is also a particular solution of the homogeneous system (3), (4).
The particular solutions (9) and (12) can be combined to construct the functions:

{[B(x Dt—x)Vr, 0<x=<x,+ Dt

(13) 0(x, £)= oot -Dt

(225)" [+ DA (Bls—De—xP+, 05 x=x,+Dt
0) ’ ’ x>X1+Dt,

which represent the solution of the original systems (3), (4) with the following specia
boundary and initial conditions:

8(0, t)=[B(-—Dt~—xl)]‘/" £>0

(14) (%, t)= g

(15) v
w0, =(r255)" (a4 DA [B(—De—x)]i+17, >0
[B(x—xp]'in, 0<x=x,
9. 0)= {0» x> Xy
Y u(x, 0)= ?(l 5 {(n+1)‘4]_1 [Blx—xitim, 0<x<x,
| 9, X > X4

4. Method of generalized separation of variables

Another class of similarity solutions can be obtained usmg the method
of generalized separation of variables [10]. The solution wxll be sought in the similari-
ty representation: .
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(7 8(x, )=L(OB(E), u(x, £) = La()u(E),
where £ is the similarity variable, defined as
(18) & =x/o(t).

The main objective is to reduce the PDE (3), (4) to a system of ODE in & by
determing appropriate functions [,(f), ly(£), ¢(f). Such functions can be derived as

follows,
Inserting the above relations into the equations (3), (4) renders the system:

by () + 0O (I20~ (DX —20(6) 70) i) — (] =

. + @ 2(£)(2) [£202 (£)—1] gig + a0 O (2) ;‘,—’é’: ~0,
(19) ~ o
L(£)B (&) — ()0 (£).(D) g%g__(p_n..z EMA(E) E) % [( %’é ) i;% ]

30 )0~ (O] 22—l o) =0,

where a dot designates a time derivative. o
To get differential equations for the unknown functions 8(€), u (&), it is necessary to
separate the variables. For this purpose we should have:

£20%(t)—1=p(®).

i e,

(20) o(t)=A}, A,=const.
Hence

(21) (p(t)=A1t+A0» A,#:O, AO'—f:O.

The functions [,(£), /,(f) must satisfy the corresponding conditions of variable sepa-
ration. Let us divide the first equation (19) by ¢—*(f)l,(f) and the second equation by
o X)L, (E)5(£), and take (20) into account. Now let us set

o'y _ o)) _

where B, and B, are arbitrary separation constants. It can be easily shown that all
other terms in (19), depending on £, become constants. Making use of (22) we arrive
at the following results

I L()= By [Brlo()'™,  Li(t)= By (B o)+,
i. e,
(24) L(8)=By By (Ast+ A)]V™,  Lo(t) =B, [By (At + A+,
(25) E=x/ (Alt +A,).

In the simple case when A, =A4,=B;=B,=1, we obtain:
(26) L) =(t+ D), L()=(t+ 1)1+, E=x/(t+1).

The corresponding formulae (26) for some concrete values of n are:
1) n=1, i e, k=0u/ox,
LO=t+1, LH=0E+1);
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2) n=2, 1 e, k=(0u/ox)?,
LO)=\t+1, L{H)=0E+IWi+1
On the account of the foregoing results, the functions z(£), 9(&) can be determined
by integrating the following system of ODE:

e AR A%c,dg+A,(n+1)u<a>¢aln232&

dag

The only problem left is to associate appropriate initial conditions with the system
(27), (28). Let us consider the following initial-boundary-value problem in the half-
space x==0:

(28) nt'&dg[(ﬂ) dé ]'{-’ZA B[Bz& d& 214 BIB O(é) (12 lBl dé,; -r/l(lnA Bl‘-’d§‘> :O.

w0, =18), 00, )=Ly(8),

29
( ) ”(x, O) — O’ %l)ic ()C, 0) i O, 9()\‘, O) = O,

which renders to

(30) #0) =1, B(0)=1,
31) () =0, ;’f‘ (€)=0,8(2) =0.

The value of &, is not known beforehand. The wavefront is determined by the for-

mula (25):

xr=E (At + Ao,
and the velocity of the front can be calculated using the formula
(32) v=dx;dt= A&,

As the system (27), (28) is of second _order, therefore it is necessary to know

the first derivatives of the functions u(é) 9(&) at the wavefront £=¢€,. It can be seen
from (32) that the wave velocity does not depend on the time £ With this in mind
we recall the solution (9), (10) for the constant wave velocity and seek series expan-

sions of the functions B(&), %(£) in the vicinity of the point &=&, in the form
8 =[E(e Lo+ O —8)' + )
U(E) = E[E(E—E)] 1 + O[(E—&o* 1)
For the constants £, and £, the following expressions are found:
Ey=n& 4 B{(ATE2—1—a,a,)(1 — A £5)" 1 (a,B,)",
Ey=na;By/Ey(n+1)(1—AF EJ).

Note that for 4;=B;=B,=1, the values of £, and £, are equal to the corres-
ponding constants in the formula (9), which have been expected. y N

Now we can calculate the values of the functions 6(§), ?i(&), d8/dt, dujdt with an
acceptable accuracy at the point &;=¢,—0 (see the formulae (33)):

B(E)=[EfEi—EQ "+ « .., 15( 1)‘_m_[f;l(g1 gt 4

(33)

(39
lN‘(él):E‘a [E1(G—Eo)]'FHm + .. B ‘Z‘g(ﬁ):(l +“;;_) ElEz{Ex(él—io)]lm‘f‘-» s
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Having the conditions (30), (34) the system (27), (28) can be integrated numerically
for 0<E<E,=E,—0 by using the traditional shooting method. The parameter of shoot-
ing is the state of the wavefront &,

The numerical treatment of the corresponding two-point boundary problems for
the system of ODE (27), (28) is a matter of future investigation.

Conclusions

Similarity solutions are rarely applied to thermoelasticity problems. The
analytical techniques presented here are both simple and systematic and the solutions
found should be of theoretical interest. They could also be used as a test for the
numerical procedures, These solutions could be considered as intermediate asymptotics.
For arbitrary initial conditions, however, the asymptotic behaviour should be proved.

Appendix

Integrating the system (7), taking into account the conditions (8), and
presuming that F=0, W=0, we obtain

du a
(A1) &=~ p-1 O
n
(A2) _ (%) & Do+ ADIE.

Let us replace du/ds from (Al) into the right-hand side of (A2):

(du)” do  D(D*—1—ma,) 0

“\ds) ds T T DE ’

et us multiply this equality by 46/ds. Then we arrive at the following result:
du\' a0 d0  D(D2—1-aa,) (, d0

(A3) ["‘(Tfs“) “as”]”is‘z S i B (6715)'

According to an weli-known consequence of the Clausius-Duhem inequality (namely
the direction of the heat vector is opposite to the spatial rate of change of the tempe
rature), it follows that the left-hand side of (A3) is always negative. This fact yield
the inequality:

D(D?—1—a,a,)(D*—1)>0,

which easily leads to the condition (10).
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