BbJAPCKA AKAILEMUYS HA HAYKHUTE BULGARIAN ACADEMY OF SCIENCES
TEOPETHUUHA U MPUJAOXHA MEXAHMKA  THEORETICAL AND APPLIED MECHANICS
Cogma - 1971, ronm. 1I, Ne 2 Sofia . 1971, Year II, No. 2

Elastic Waves in an Infinite Elliptical Cylinder with
Micropolar Structure

Ts.P.lvanov

I. Introduction

The propagation of harmonic waves in infinite circular cylinder with
stressfree surface is investigated on the basis of the classical linear theory of
elasticity for the cases of anisotropy and different kinds cross section of the cylin-
der. Simultaneously a new direction of divelopment is seen, connected with the
asymmetric theory of elasticity for the Cosserat medinm — medium with mic-
ropolar structure [I], the deformation of which is described by six independ-
ent functions: three components of the displacement vector and three com-
ponents of the rotation vector. Upon the basis of this theory W. Nowacki
and W. K. Nowacki [2,3] have obtained the cases of propagation of longi-
tudinal and torsional waves in infinite circular cylinder. The general case of
harmonic wave propagation is investigated in [4].

In this paper on the basis of micropolar theory of elasticity the propa-
gation of harmonic waves in an infinite cylinder of elliptical cross section is
considered. Through the introduction of potential functions and the separation
of variables, the solution of the problem is reduced to the solution of Ma-
thieu’s equations. The boundary condition that the cylindrical surface is stress-
free is obtained in the form of an infinite determinant permitting the phase
velocities of wave propagation to be determined.

The derived results allow a possibility of obtaining the particular case of
harmonic wave propagation in circular cylinder.

II. Basic Equations and Their Solution

The basic equations of motion for isotropic, homogeneous and centro-
symmetric medium with micropolar structure in Cartesian coordinate system
x;({=1,2,3) have the form [2];

2.1 (u+a)7 2u+ (24 u—a) grad div u+2a rot w—ou
(2.2) (y+¢)% 2w+ (f+y—e) grad div w+2a rot u — 4 aw— Jw,

where the following notations are introduced:
u==(u;, iy, u;) — the displacement vector;
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w = (w4, w}, wy) — the rotation vector;
0 — the density;
J — the rotational inertia;

2 1, B, v, 0, ¢ — the characteristic comtants of materlal

; 0 )
2= % the Laplacian operator.
1)!',‘ d

The repealing of the subscripts denotes summing up from 1 to 3. The func-
tions u and w depend on the position x=(x], x;, x;) and the time £ With dot
upon the functions the time derivatives are marked.

The state of strain is described by two asymmetric tensors: tensor of
strain ;. and the curvature twist tensor u;j. They have the form

’
ou; ()(:)

2.3 = — e, =
( ) /lj ())C; klj '3 ij 0x‘ 3

where ¢, is the tensor of Levi-Civita. The subscripts can take values from 1
to 3. The state of stress is defined by two asymmetric tensors: tensor of
stress o), and the couple stress tensor u}. The stress-strain relation is describ-

ed by the equations
o= (uta)yy,+(u—a)y + 17,85 ;
=y ;e)nij—%('y—s)z + Bx 01,

where d;; is Kronecker deltas.
The solution of the problem is being sought in the form

(2.4)

4 ﬁff 0}/} r_ [ Of 4 %8 )
ul ( +- >cos(kx tot); o= (dxl M)sm(/m + o),

0“"1 X9 X9 )
o F 1 [ Op dy / of og
25) “(5;2’"“ o > cos (kx)+wt); )= <ax2 o )sm (b, + wt),
uy = po sin (kx,+wt) ; wy=qf cos (kx;+of),
where o, v, fand g are functions of xjand x;, Qk“ is the wavelength, - —its fre-

quency; ¢= F denotes the phase velocity of propagation in x; — dlrection; p

and ¢ are constants which will be determined later on.
Equations (2.1) and (2.2) will be satisfied on condition that «k ' 0, if the
following equations are satistied [4]:

(2.6) Ap; 89, =0, Afi+nlfi=

where i is equal to 1, to 2 or to 3.gi(x], x;) and f,-(xl’, X,) are potential func-
tions corresponding to the quantities & and »% respectively and

(27) | A==y =
dx'Q ar;
2. w0t 9 JoP—da .,
(2.8) =iz B M=,

The quantities &2=y%i=2, 3) are roots of the equation
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(2.9) (= aNz—eN& = k2 — (7 1 edow? 4 (u-t a)Jao? — 4a).
— 4a2)(24- k) L+ 000*(Jow? — 4a)=0.
‘They are alwavs real numbers. The functions y; and g; have the form
(2.10) wi=ufy & oin
where
1, =0, 2akr;=—(y-e)n?+ kY4 (Jo?*—4a), (i=2,3),
6,=0, 2ako;=(u+a)(&+k2)—co? (E=2,3).

The general solution for the displacements and rotations is given by (2.5),
where ¢, v, f, g, p and ¢ are replaced by ¢;, y; fi, g p; and g; respectively
and the obtained expressions are summed up from 1 to 3. The quantities p;
and ¢, are

(2.12) Pi=—q1=—k, kpi=—Fkq;=8, (i=2,3).

(2.11)

When 2=0, but «=0, the problem can be reduced again to a system of
the same kind as (2.6). It is shown in [4].

If a=0, the equations (2.1) and (2.2) become independent omne from the
other, as the equations (2.1) correspond to the classical theory of elasticity.
Sinse the two systems have the same structure, the solution of the equations
(2.2) is obtained in the same way, as the solution of (2.1) in the classical
theory.

Ill. Determination of the Displacements,
Rotations and Stresses

The solution of Egs. (2.6) will be sought by separation the va-
riables in an elliptical coordinate system x;(i=1, 2, 3), where

x,=1lch x; cos x,;
(3.1 Xo==1sh x, sin x,;
x'3=)03

and 2/ is the focal length of the ellipse corresponding to x,=const. The ope-
rator A has the form

(3.2) 4= hlz (jx‘f + :
Using representation

Tl X1y Xo) = @iy(XD)@ia(Xa), (=1, 2, 3),
fi(xly X3) :fil(xl)fiz(x2)’ (i= 1,2, 3)

x:f, ) »  2h%=[2(ch 2x,— cOS 2X,).

(3.3)

is obtained

(3:4) ng_, “(a;—24; cOS 2X5)p;5 =0, f:;z +(B:—2ui €08 2X5)fis=0,
2 ‘2
(3.5) “”“‘j —(4;—2i;ch 2x. )71, =0, fjj — (Bi—2us ch 2x7)fy =0,
Lad : o 1
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where 42;=[28 and 4u;=[*Xi=1,2,3); a; and g, are the separation constants.
The equations (3.4) are Mathieu’s equations and the equations (3.5) are the
modified equations of Mathieu. Since the solution has to be periodic in X,
with period 2, the separation constants must be chosen equal to the charac-
teristic numbers of the corresponding equations. All information on Mathieu’s
equations and also for the notation used can be found in the book of
McLachlan [5].

We will consider only the case when 4,>0, u,>0(i=1,2,3). The other
cases can be considered in an analogous way.

The periodic solutions of the equations (3.4) and the two linearly independ-
ent solutions of the equations (3.5) are respectively

Cegu(Xgy Ar)= 4\1.43’,’(1,') cOS 2rxy

=

CContr(Xoy Ai)= 2/13’;1‘,‘(1,-) cos (2r--1)x,

r=0
(3.6) Pio(X9)= "
S€onti(Xgy A;)= ZB%’,’E(L) sin (27-4-1)x,
r=0
Seonya(Xa )= > B3/ T3(A) sin (2r-+2)xs,
r=0
[ Cean(xy, Ai); Fegn(x,, )
| e Xy, A); Fe Xy 4
(3.7) Q’il(x])zj 2n-l—1( v Ai); 2n+1( 1 i)

) .

|S€2n—|-1(x_|_; i) Gegpt (X9, A7)
lSe2,,+2(x,, A}y GegpioXy 4i)

where the corresponding characteristic numbers are

(3.8) a.[:agn(li), (li:agn-ﬂ(li)y ai:b?n‘l—l(;'f): ai:b?’ﬁ-?(’{f)

and analogously for fi(x,) and fu(x,).

It is possible to satisfy the boundary conditions for four types of harmo-
nic waves, for which the following conditional designations are used, analo-
gous to those introduced for a circular cylinder.

A. Flexural waves of the Ist type

(3.9) @i X1, xg)"'*’Z[qéQHC%H—l(xla A+ F2(£z)+1F32n+1(x17 An)lceoni1(Xoy Ai);
. n=0

fi(xy, X9)= Z [S§;1)+1532n+1(x1a ﬂz)“f Gé‘,2+1(}e2,,+1(x1, w)1S€ant1(Xas 1;)-

n=0

For this solution, when x,--const, the displacements u, and u, are symmetric
with respect to the major axis and antisymmetric with respect to the minor
axis and the displacement u, is antisymmetric with respect to the major axis
and symmetric with respect to the minor axis and the opposite for the ro-
tation w. '
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B. Flexural waves of the lind type

FAX. -‘i'ﬂzfl&:_lsem—l(«"p i) = 0512+~1032n+1(x1v A))S€9n 41 (Xgy 41)5
(3.10) =

.fi X, X3)= :{a‘;&'—lce'ﬁ']f](xl’ Au,')_,—Fé‘ln)-}-lFegn—i—L(xu ﬂl')]C€2ﬂ+)(x2, :u[)'
=
For this solation, when x,=const, the displacements #, end u; are antisym-
metric with respect to the major axis and symmetric with recpect to the miror
axis and the displacement u, is symiretric with respect to the major axis and
antisymmetric with respect to the minor axis and the opposite for the ro-
tation w.
C. Longitudinal waves

( ¥ 14 X1 ":2‘) - .:w[Ci": C€2,,(X1, ;“[) + F;Sf,)Feg,,(x[, }Ll-)]Ce.Z,,(XQ, }‘i);
3.11) =

= S ; {ﬁ' (1) ~(7) y \
Xy Xo)= _ [SanaSeguto(Xy, )+ Gang2Geauyo( Xy, 11,))S€onto(Xar 11;)-
=0
For this solution, when x,=const, the displacements u, and u; are symmetric
with respect to the major and minor axis, while u, is antisymmetric and the
opporsite for the rotation w.
D. Torsional waves

7(xy, xg)=27{5§’n)+2562u+2(x1. i)+ G‘(er1)+2032n+2(x1’ ADIS€anto(Xos 42)5
(3.12) n=0
f,' (x, x-‘g):‘lj[céln)cegn(xp lu,‘) o E Féln)Femz(xl: lu'i)]ce‘ln(,xQ’ lut')'
n=0
For this solution, when x,=-const, the displacements wu, and u; are antisym-
metric with respect to the major and minor axis, while u, is symmetric and
the opposite for the rotation w. .
In the equations (3.9) + (3.12) C, FP, S and GY) are constants, which
will be determined by the boundary conditions.
The components of the displacement and the rotation in an elliptical co-
ordinate system have the form

3 3
3/ g " NI AW
= (52 +300 ) cos (ki oi); o= Z(a{culj-af’c Jsin (kxy o0t

,‘i-,/ 0Xxy = 2
3 3
(3.13) /711:‘::(5;‘2’ g_’éli ) cos (kx, +ol); /z.mﬂfr—g;('d‘?-){; —g%) sin (kx, - mf),
3 3
0, = _:Vp!q-i sin (kx,-+ wt); wy= Q;q,f,- cos (kxz—wl),
=1 =1

where 10 5. v, 7 and g is looked upon now as functions of x, and x,. The

R

state of strain is described in an elliptical coordinates by the tensors:
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1 0uy 1 0k | )

T e TR %, 4o uT g 5}1+h~ dxy V2
10w, | 1 0h 10wy, 1 0k
Y2 =g g, TR ox M 0= 5z, T IR g, Ov
9, __ 0oz
733'—6x3 ) 0¥
N 1 1 dwy
78T ox, P10 %287 o,
0u~) 0L0~
(3.14) L TN T3 %32 = d}i ?
. 3 _ Lawg
7137 0x1+0)3’ 187y x,
ou . doy
Y317 5% WDg 5 31 G
_ 10wy 1 0k P _ 1 0wy 1 0h
12T xR Ox, 1T W8 FT G TR ox, "V
L Low 1 on 10w, 1 0k
Y ox, h2ox, e T T T dx) TR ox Do

By using the stress-strain relations, which are the same as in Cartesian
coordinate system and (3.14), is obtained
1 ou 1 oh 1 ou, oh ou
"11‘;(““2/‘)(/1 ar]“hiéék ”’)+’”(h 0%, Jrizz oty 3)
1 0u, 1 0h 1 ou 1 oh
019==(p:t-a) (';? e g e ) H (=) [ G — i g )~ 20y
1 ou.
o3=(u+a) W dx% +(u— )01 +-2aw, ;
(3.15)
. & | 0wy 1 Ok 1 dw, 1 Owg
,un--(/f—}—ly)(-h 0x, e 0% (02) ﬁ(h Oxy | = dxl 1+()x3)
1 dw, 1 oh 1 Ow 1 oh
M12=(7+8)(7'0f 7125;;601)%‘(7—6)(7&*;~ﬁ5€1w2);

, 1 dw; 0
ti=(r+¢e) 4 a“x—s'f-( —g) o>

IV. Boundary Conditions and Equations for Phase Velocities

The boundary condition that cylindrical surface is stressfree
has the form

(4.1) 0= 019== 0137 1 = t1g= g3~ 0

for x; =&, and ¢ in the case of hollow elliptical cylinder (&,.- x,=:&), where &,
and & are constants. The solutions (3.9)+(3.12) can be applied in this case.
In the case of a solid elliptical cylinder the boundary condition (4.1) must
be satisfied for x;=&0-=x,=¢). For this case we set Fy'=G% =0 (i-1, 2, 3)
in the solutions (3.9)+(3.12), as it is shown in [6]. It should be noted here
that these solutions lead to continuous displacement and rotation expressions
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across the imterfocal line. In the same time they are correct for the case of
an iniinite space with elliptical cavity (¢<x,<<).

Since the following calculations are very long we will consider only
one of the possible cases: propagation of flexural waves of the Ist type where

25 G",i” =0 (i=1,2, 3} For the purpose of simplification of the notations we
\nlte LARTL IBRTL abyy and b i(i==1,2,3) instead of A3Ei(4), Bifi(w),
A3 (&) and bye,(u;). . .

When we use the equations (3.6), we obtain for the potential functions

e

TAX), Xgh= " N Vcﬁ,’j 1Cegny (%1, X)) A El cos (2r+1)xy;
v'3=ﬂ =i

(4.2)

e

Fixy, xe=_8 _NSE) (Sep, (e, w) B sin (2r-1)x,
=0 r=_

By substututmmg (4.2) in (3.13) and the obtained result in (3.15) is seen that in
order to satisiv {4.1) we must have

Lha s UHs XWE) 2440 X U .
WIS VS VU YIS 2P Vi) ViR .
Wiz) WS Wun TZiE) 2ZIE) ZE) W) .

_ Uiz U LS AXE) 3Xin:) SXIGE) WUk . . .
(4 W) VI VI i) h) i) Vi) . -
WHE PWIE) WA 429 SZiE) SZi() AW
Wi W) UK XHO) Xy X)) 1UNE) .

where
W (x) = { Akpi—E) [(2 ch? 2, + 1Y ARt — 4R3I ch 2x, L3
+ (0l 1 — 24, ch 2x,) (AN ch 2x, — K5t %)—,uf/wé’;i%}
X Cegni (%1, ki) —wl A3 sh 2, Cegpin(x, A1),
Bl by )*,,t,f[(gru)ch 2%\ Byt — INar 1S e 1(x1, 1a2)
—i2r—1¥B = sh 22800 (% ned
() Va0 Wi N 2 1 AT ch 2x0]Cern (X0 Ay
— o — ¥, a;_; sh2x, Cegq (x4, is),
‘]“'f_f:fﬂ,l':n_ a— ar fi KeiZi—‘BaiZich 7\'1)(bn'_‘—2u ch2x,)-+ iRl

r+1
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~—(2r-+1)* ’BQr_H ch 2x,]+ a(r,;] ——2ql) S [(Zchz 2x,+ 1) B’/l s }

— Qi 2n+1 -
4uGEEl eh 2

+1L§’fli} } Se2/z+l(x1: M;)‘f‘,utiBg,;i} sh 2xlse£)n+l(x1’ :ui)’
2, 1 1N ’
TWarii(%,)=(u+a)p; —(u—aye—2a0,) A%t 11 Cetn1(Xy, A1),
23 (60) = [ (u—alers -+ 2a)(2r + 1B T Seyn (1),

U () = —yoi{((2r-- 1) ch 2x FAS T — NS Cebnyi(xy, 1)

_(Qr'L l)lAg’rlTIl sh 2x,Ceyni (x4, 2)},

X%y = { - Blkqi4-m)](2ch®2x, 4 1) Byrfi— 44K ch 2x + L5
+ (650 +1—2m; ch 2 )(BYE] ch 2, — KV TH /’ME’,’“}

: 2 1 ’
X Segni (%1, wi) — ¥ Bor i1 sh 2x;Ses, (x4, ws),

F o+ 1

2
*Hv;ﬂkx.)-—-{»—yol[( Karfi— A5 T ch 2x))(ab) o1 —24; ch 2x )+ R3]

—(2r-F 1214551 ch 2%, |- ac,&2 [(2ch2 Doy -1 A9

— 41}(31;_[—11 ch 2x,+ lLf)lrljrll }Cezn—H(xp i)

. 2 ] ’
-+yo A5 sh 2x,Cean (), 40),

Y ST (0) = — p [[Nor il —(2r+ 1) By T ch 2x,] Sebn1(x1, )

—9(2r 1) B3] sh 2, Segnt (X4, 1),

2n+1

3+iW§’rIi}(x )=—(y—e)ko, (2r+1) AZr*l C52n+1(x1a /~l)
21+ 1

3+'Zgrrli}(x1)= (7 +e)g:+(r—e)rf BZr*lseh +1(Xy, i)y, ((=1,2,3)

where the prime denotes the derivative of x,.
We have used the notations

PMIT =3 AT AT My = (274 BY AN T —(2r— 1) A5

;A a2n4-1 Fp2nt-1 Fp2nkl caa2n-+1 v p2n+1 ; 241
My =3B " —iB] : 2Ms, 11 =(2f-|—3)132,-+3~—(2l’-—— l)’Bz,_‘],
A 72n-1 i A2n+1 ; a2n+1, Zn+1 i A2n+1 i A2n+1
INUH =2 AT NG = (r - 2V AR L (r— 1) AT
FxTen+1 ip2n+1 , ;p2n-+1, Zrz 1 2n+1 Fp2n 1
INTH = gipytl gt ‘Nag 1= (r4-2)Boris+(r—1)Ba1,

PRI = 15AT L BATTY S 2IRE = (2r 4 3)(2r+-5) AT
(2r—1)(2r—3) A3,

2RV =158 3BT, 2RI = (2r+3)(2r+-5)Barts
+ (Qr—- 1)(2r—3)B5ty,

QKT AATH AT 2K AT AR,

(4.5)
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~Nippan—1_ iptn—1  Ip2n+l i2n+1  ip2ndl1 | ip2n+l
YK =By —Bi; PRI =B+ By, r=1

Sip2n—1 [ y2n—1 [ a2n—1 [ y2n+1 i a2 1 i 22n+1

R = ,—lsq —fA3" LS = A7n+ -+ A11+ 3

ipla—1 [ g2m+-1 { a2n—1 T2 1 t n2n+1 {p2n+1

P Lar T~ An s —" A 3; oLy =By B

5T 21 ipa-1 ipln—1, iT2n+1 [ p2nd+l | ip2n+l -
rl: B "B 5 2 Lo = Boris+ By 3, r=2.

The equation (4.3) is the frequency equation, from which the possible
velocities oi wave propagation can be determined. An approximate solution we
will have when we put equal to zero the subdeterminant which is obtained
from the determinant in (4.3), taking 6m (m=1,2,3,...) rows and columns,
counted from the leit upper corner. The mechanical interpretation of this ap-
proximation is given in [6].

The case of wave propagation in cylinder with a circular cross-section,
investigated in [4], can be obtained from the present formulae as / tends to
zero and x, tends to infinity in such a way, that /chx, should tend to r, this

means that the ellipse with the semimajor axis r tends to a circle with the
same radius. Then the determinant in (4.3) where M s B 241 and

"Y%’,’i} ({=1,2,...,6) are previously multiplied with /2, reduces to the product
of infinite number of finite determinants with six rows and columns, every one
of which can be put equal to zero, in order that the boundary condition 4.1)
be satisfied. -
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